

Lesson Exemplar for Science

Quarter 1 Week 7

Lesson Exemplar for Science Grade 7 Quarter 1: Week 7

This material is intended exclusively for the use of teachers in the implementation of the MATATAG K to 10 Curriculum. It aims to assist in delivering the curriculum content, standards, and lesson competencies.

The Intellectual Property Code of the Philippines states that "No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for profit. Such agency or office may, among other things, impose as a condition the payment of royalties."

Borrowed materials (e.g., texts, illustrations, musical notations, photos, and other copyrightable, patentable contents) included in this learning resource are owned by their respective copyright and intellectual property right holders. Where applicable, DepEd has sought permission from these owners specifically for the development and printing of this learning resource. As such, using these materials in any form other than agreed framework requires another permission and/or licensing.

No part of this material, including its original and borrowed contents, may be reproduced in any form without written permission from the Department of Education.

Every care has been taken to ensure the accuracy of the information provided in this material. For inquiries or feedback, please call the Department of Education - Regional Office via telephone number (02) 85229412 or send an email to ncr@deped.gov.ph.

Published by the Department of Education Secretary: Juan Edgardo "Sonny" Angara Undersecretary: Gina O. Gonong

Development Team				
Cris Mari S. Dela Cruz, Liezel M. Busmeon				
Priscila D. Cabigting				
Waylie Nina D. Claro				
John Albert A. Rico, Jeffrey L. Sanggalang				
Joe Angelo L. Basco, Elaine Margarett U. Baguio				
	Development Team Cris Mari S. Dela Cruz, Liezel M. Busmeon Priscila D. Cabigting Waylie Nina D. Claro John Albert A. Rico, Jeffrey L. Sanggalang Joe Angelo L. Basco, Elaine Margarett U. Baguio			

Management Team

Alberto T. Escobarte, Viernalyn M. Nama, Dianne Catherine Teves-Antonio, Louie Oller V. Erni, Nanette Joy P. Larinay, Lhovie C Damian, Redgynn A. Bernales

Development Team				
Enhanced by: Content Validators:	June Daffodil F. Saquilabon, Merlie Gerlie V. Capiral			
Internal:	Corazon A. Javier, Jocelyn R. Agulto, Armida Oblinada, Maripaz T. Mendoza,			
External:	Roxanne S. Villanueva, Rowena C. Lamera Ryan Lansangan, Louie B. Dasas			
Language Validator: Illustrator:	Donaid Samson Aileen G. Gutierrez			
Layout Artist.	Management Team			
JOCELYN DR ANDAYA CESO IV, Director IV CRISTITO A. ECO CESO III, Assistant Regional Director MICAH G. PACHECO, OIC-Chief Education Program Supervisor, CLMD DENNIS M. MENDOZA, Regional EPS/ LRMS Head MYRON WILLIE III B. ROQUE, SDO Valenzuela LRMS Education Program Supervisor				

MATATAG	School	Grade Level	
K to 10 Curriculum	Name of Teacher	Learning Area	
Weekly Lesson Log	Teaching Dates and Time	Quarter	

	DAY 1	DAY 2	DAY 3	DAY 4
I. CURRICULUM CO	NTENT, STANDARDS, AND LI	ESSON COMPETENCIES	·	
A. Content Standards	The properties of solutions, s	such as solubility and reaction	to litmus, determine their use	
B. Performance Standards	By the end of the Quarter, lea use diagrams and illustration demonstrate an understandin demonstrate skills to plan an units.	arners recognize that scientist ns to explain the motion and a ng of the role of solute and sol nd conduct a scientific investig	s use models to describe the p rrangement of particles during vent in solutions and the facto ation making accurate measur	article model of matter. They g changes of state. They ors that affect solubility. They rements and using standard
C. Learning Competencies	Identify the role of solute and solvent in solution.	Identify the role of solute and solvent in solution.	express quantitatively the amount of solute present in a given volume of solvent.	express quantitatively the amount of solute present in a given volume of solvent
D. Learning Objectives	 At the end of the lesson, the learners shall be able to: a. identify the degree of solubility of the solute and solvent in forming solutions; b. perform investigations on different solutes that can be dissolved in a given solvent (e.g., water, oil, etc.); and c. practice safe handling of materials while performing their experiment. 	At the end of the lesson, the learners should be able to: a. identify how solute and solvent affect the solubility in the solution b. differentiate dissolving from melting, and c. explain the factor/s affecting the dissolving and melting of materials	At the end of the lesson, the learners should be able to: a. differentiate between percent by mass and percent by volume; b. calculate percentage composition by mass/by volume of a given solution, and c. discuss how knowledge of percentage composition is important to daily life.	At the end of the lesson, the learners shall be able to: a. differentiate the three types of solutions as saturated, unsaturated, and supersaturated b. identify the types of solution based on the amount of solute and solvent in a solution (unsaturated, saturated and supersaturated solutions) c. predict the type of solution formed based on the amount of solute and solvent present in a solution using the solubility curve

Instructional	Collaboration, C	reativity,	Collaboration, Explore,	Context, Engage,	Context, Reflective
Design Framework	Experience, Inte	grative	Ideational	Integrative	thinking, Ideational
	Creativity, Critic	al thinking,	Visual literacy, critical	Critical thinking, problem	Critical thinking,
21st Contury Shills		lg,	alrilla teomuork	solving, reliective thinking	collaboration, problem-
21 st Century Skills	self-discipline n	on-verbal	skills, tealliwork,		solving
	communication		management		
	Investigating diff	ferent	Dissolving vs Melting	Percentage Composition	Saturated Unsaturated
II. CONTENT	solutes that can	be			Supersaturated solutions
	dissolved in a giv	ven solvent			Supersaturated services
III. LEARNING RESO	OURCES		I		
	Raymond Chang	g et al	Theodore Brown et al	Theodore Brown et al	Raymond Chang et al
A Deferences	Chemistry		Chemistry: The Central	Chemistry: The Central	Chemistry
A. References	(12 th ed 2016) pp	p-506-547	Science (14 th ed 2017)	Science (14 th ed 2017)	(12 th ed 2016) pp-506-547
			pp 520-570	pp 520-570	
				https://www.tensens.com.	https://chem.libretexts.org
B. Other				au/TBLABELBLEACH4/Tr	/Bookshelves/Introductory
Learning				ue-Blue-Labels-Bleach-	<u>Chemistry/Chemistry_for</u>
Resources				4%25-Chlorine/pd.php	Allied_Health_(Soult)/07%3
					A_Solids_Liquids_and_Gase
					S77.07%3A_Solubility
IV. TEACHING AND	LEARNING PROC	EDURES			
Before/Pre-Lesson P	roper				
	Matching Type:	:	Activity 2.1 THINK-PAIR-	Let's recall your	PRE-ASSESSMENT
	Match Column A	A with	SHARE	understanding of concepts	1. We can say that a
	Column B			in the solution by	solution is diluted when
		0.1	Present to students the	completing the table below.	A. the concentration of
	Column	Column	scenario below:		the solute decreases
Activation of Driver	A 1 soft	B solid in	SCENADIO 1	Identify the solute and the	B. the concentration of the
Knowledge	drinks	a. solid	Students placed sugar into	solutions	C the volume of the
Miowieuge	2 seawater 1	b liquid in	a cup of tea. They observed	solutions.	c. the volume of the
	3. bronze	a liquid	it until the sugar cubes		D the mass of the solute
	4. gasoline	c. gas in a	were no longer visible.		remains constant
	5. air	gas			
	0	d. gas in a			
		liquid			

	e solid	SCENARIO 2	Solution	Solute	Solvent	2. What happens to the
	in liquid	Another group of students	1. Ocean water			concentration of a solution
	III IIquiu	observed ice in a glass	salt and water	~		when more solute is added?
		placed on top of the table	2. Air Components:			A. the concentration
		They observed it until the	nitrogen and			increases
Answer•		ice changed from solid to	oxygen 3. Gold Jewelry			B the concentration
1 <i>d</i>		liquid and completely	Components:			decreases
2 p		maltad	goid and copper			C the concentration
2. 0		mened.				C. the concentration
5. u 1. h		CHIER OFFICIAL				remains the same
4. D 5. c		GUIDE QUESTIONS:				D. the concentration
5.0		1. what caused the sugar				doubles
		cubes to disappear?				
		2. What caused the ice to				3. In a diluted solution,
		liquify or melt?				there is
		3. How does temperature				A. no solvent
		affect the change of				B. no solute
		sugar to disappear and				C. small amount of solvent
		ice to melt?				D. a large amount of
		4. What happens to the				solvent
		kinetic energy of solid				
		sugar as it dissolves in a				4. What does NOT change
		cup of tea?				when adding solvent dilutes
		5. How does temperature				a solution?
		affect the kinetic energy				A. volume of solvent
		of ice as it melts and				B. mass of solvent
		liquifies?				C. mass of solute
		6. Why does dissolving and				D. concentration of the
		melting happen in				solution
		different materials such				
		as in sugar dissolved in				5. Which of the following
		cup of tea and melting of				refers to the solution that
		ice?				contains less solute than
						can dissolve at a given
		Possible Answers:				temperature?
		1. The hot temperature of				A solubility
		the tea caused the				B dilute solution
		sugar cubes to be				C saturated solution
		dissolved in the tea				D unsaturated solution
		aissoivea în îne lea.				D. unsaluralea solution

		 The hot temperature of the surrounding caused the ice in a glass to melt. The higher the temperature the faster it is for the sugar cubes to be dissolved and the ice to melt. The kinetic energy of solid sugar increases as the temperature increases causing it to disappear and be dissolved in the liquid faster. The solid ice cubes absorb energy causing its kinetic energy to increase and change its form from solid to liquid known as melting. Dissolving and melting happens when there is an increase in the temperature of the materials present in a solution. 		
Lesson Purpose/Intention	The students will unlock the vocabulary words through a game called " <i>Wika Rambulan.</i> " Direction : By saying/pronouncing and connecting the Set of	In our lesson today, we'll explore two fundamental processes: melting and dissolving. Melting, as many of you may already know, is when a solid substance transforms into a liquid state due to an	Percent Concentration The concentration of a solution is a measure of how much a particular substance is dissolved in a solution. In particular, it is the amount of solute	DISSOLVED OR NOT DISSOLVED: If 36.40 grams of salt can be dissolved completely in 100 mL of water at 40°C, what do you think will happen if you mix 50 grams of salt to 100 mL of water at the same temperature?

Words, reveal the hidden term. Words to unlock: 1. solution – SAWLOOSHONE 2. nature – NAYCHORE 3. soluble - SOULLOOBALL	increase in temperature. This process is not just about ice turning into water; it's the key to understanding how materials behave under different conditions.	dissolved in a given amount of solution. You can see from the following examples the concentration written on the label.	This lesson will explain to the students the concept of solubility showing the relationship of the mass of solute to the given amount of solvent at a particular temperature.
4. insoluble- INNSOULLOOBALL 5. solubility-SAAL-YUH-BI- LUH-TEE	On the other hand, dissolving is a phenomenon that happens all around us, from sugar dissolving in your morning coffee to salt disappearing into a pot of boiling water. But why do some substances dissolve while others don't? What factors influence this process? These are the questions we'll unravel together. By understanding melting and dissolving, we gain insights into essential scientific concepts and their real-world applications. From cooking to manufacturing to environmental processes, these phenomena play crucial roles in shaping our daily experiences and the world around us.	Concentrations of solutions can also be expressed quantitatively: (1) percent by mass and (2) percent by volume. Percent (%) means parts per hundred parts. The table shows the mathematical equation of expressing concentrations of solutions quantitatively. Percent Concentration $\frac{Percent by mass of solutie (g)}{mass of solution (g)} \times 100$	Source: https://chem.libretexts.org /Bookshelves/Introductory _Chemistry/Chemistry_for Allied_Health_(Soult)/07%3 A_Solids_Liquids_and_Gase s/7.07%3A_Solubility

	From the words uploaked	Let students read the	Read the comic strip and	DIMBLE SCRAMPIE
	by the students, they will	following keywords about	answer the questions	
	by the students, they will share their definitions of	dissolving and let them try	below	Directions: Unscramble the
	the fellowing words	to use each word in a	below.	bilections. Onscramble the
	1 solution	to use each word in a		definition given below
	1. Solution - a	Sentence.	Hi! I'm Mr. Volvo!	Write your enguar in the
	nonnogeneous mixture		HAMA	white your answer in the
	composed of solute and	Solvent		space provided.
	2 patura a characteristic			1 Inlituachi The ability of
	2. Hature - a characteristic		Have you heard	a given substance to
	2 soluble able to dissolve	Insoluble Intermelecular ferrors	concentrations	dissolve a solute in a
	4 insoluble connot be	• Internolecular forces		dissolve a solute III a
	dissolved		Yes. Concentrations of solutions	solubilitu
	5 solubility-ability to be		can also be expressed quantitatively namely PERCENT	2 tourssatd - A solution
	dissolved		BY MASS and PERCENT BY VOLUME. Percent (%) means	that contains the
	dissolved		parts per hundred.	maximum amount of
				solute that is capable of
Lesson Language				being dissolved
Practice				saturated
			88	3. atsautnured – It has
				lesser solute that
			+ + You're right! But, how	doesn't achieve the
			PERCENT BY MASS?	maximum capacity of
			A A A A A A A A A A A A A A A A A A A	solvent to dissolve in a
				solution.
				unsaturated
			PERCENT BY MASS can be	4. pseursteurasatd – A
			obtained by determining the mass	solution exceeds the
			solution. The mass of the solution	maximum amount of
			is equal to the combined mass of solute and solvent.	solute that a solution
				can hold. Crystallization
				may form in this type of
				solution.
				supersaturated
			1 T	

Solutes are considered		The concentration of a	Once upon a time, in a
soluble in the given solvent	A. MELTING	given solution is described	bustling kitchen, there was
if they dissolve easily		as the measure of the	a young chef named Lily,
because of their similar	Ho(s) meltinó Ho()	relative amount of solute	eager to master the art of
nature. Examples are sugar	88888	and solvent it contains.	candy-making for the
being dissolved in water	│ (<u>}</u> }}2222) ── (? 7777) │	Qualitatively, solutions can	village fair.
and salt being mixed with	~~~~~	be described as diluted or	C
water to form a brine	water (solid) water (liquid)	concentrated. A solution is	One sunny afternoon, Lily
solution. On the other		concentrated if it contains	decided to make lemon-
hand, insoluble solutes are	B. DISSOLVING	a relatively large amount of	flavored lollipops. She
those that do not dissolve	dissolving	solute in a given volume of	heated water in a pot,
in the solvent because of		solution. A diluted	adding sugar until it
the differences in their		solution, on the other	dissolved completely. "This
nature. For example, butter		hand, contains a relatively	is an unsaturated solution,"
is insoluble in water.	salt, added to water	small amount of solute. The	she thought, noticing there
		strong scent of perfume	was room for more sugar.
When the two substances	1. How are the particles of	and the sweet taste of fruit	Ç
are both liquids, the terms	melting substances from A	juice are some examples of	With a mischievous grin,
miscible and immiscible are	different from dissolving	highly concentrated	Lily added more sugar until
used instead.	substances from B?	solutions. The measure of	the water was saturated.
		the amount of solute that	She poured the mixture
	2. What happened to the	has been dissolved in a	into molds, creating sweet
	number of salt particles	given amount of solvent or	lollipops.
	and the number of water	solution is called the	
	particles when salt	concentration of solution.	But Lily wasn't done
	dissolved in water?		experimenting. She tried
		How the concentration is	making rock candy, heating
	Did the particles of salt	measured or described for a	water, and adding even
	become smaller or loose as	solution depends on the	more sugar. "This is a
	shown in the particle box?	nature of the solutes in the	supersaturated solution,"
	Explain.	solution and the	she exclaimed as she
	-	applications and uses of	watched the sugar dissolve.
		the solution. The simplest	
		concentrations we see are	Excited, Lily poured the
		those listed on the bottles	solution into jars and hung
		of household chemicals	sticks in it. As it cooled,
		that come in different	excess sugar crystallized,
		strengths. These are	

	usually given as	forming beautiful rock
	normanta and	condu
	percentages.	candy.
	If we were to look in the	
	bathroom or kitchen of our	
	house, we would probably	
	find a bottle of peroxide for	
	disinfecting bleach for	
	cleaning that has a	
	percentage labeled	
	prominently on the front of	
	the bottle. This percentage	
	is a form of quantitative	
	description of concentration	
	that tells how strong that	
	peroxide or bleach solution	
	is. Most household	
	bleaches are labeled 5%	
	This means if we were to	
	measure out 100 grams of	
	bleach 5% or 5 grams of	
	that would be the solute	
	the pure blooch or adjum	
	the pure bleach, or sourch	
	hypochlorite. To account	
	for this percentage by	
	mass,	
	maga of oplato	
	% mass = $\frac{mass of solutions}{mass of solutions}$	
	\mathbf{x} 100	
	A 100	
	When two liquids are	
	mixed the colculation is a	
	hit different This is called a	
	volume (volume or (v/v)	
	volume/volume of (v/v)	
	percent solution, which	
	means that it is the volume	
	of the solute in the volume	

			of the solution. The peroxide we find in our bathroom in a brown bottle is usually a 3% (v/v) solution, which means if we poured out 100 milliliters of it, it would contain about 3 milliliters of liquid hydrogen peroxide, with the remainder being the water solvent. Below is the formula for solving for percentage by volume solvent. Below is the formula for solving for percentage by volume solvent Below is the formula for solvent solvent Below	
Developing Understanding of the Key Idea/Stem	Guide questions: 1. Differentiate between soluble and insoluble/ miscible and immiscible. Support your answer with	The table below will helpyou understand thedifference between meltingand dissolving.MELTINGDISSOLVING	Answer the questions below. 1. When do we use mass percent (m/m %) or volume percent (v/v %)?	Guide Questions:1. What are the 3 types of solutions formed by Lily in her candy making?
	2. Does the nature of solute and solvent affect their	Liquid is the same substance as the solid Liquid is the Additional substance is needed (the solvent) is needed.	2. How are the formula used to solve for percentage	2. How did she describe each?

achubility? Evenlain your	Not all solids	This can involve	by mass and parasetors by	2 What do you consider in
solubility? Explain your	melt on heating	chemical changes	volume different?	3. What do you consider in
answer.	or decompose)		volume unerent?	determining the type of
The students will test the	Only one	Involves two materials	3 What other examples of	solution?
solubility of the given	substance is	and the resulting	materials can be found at	
solutes and solvents and	involved	solution is a mixture of both.	home that show percentage	Study the table below and
share their observations in	Hoot is pooled	The disselved substance	composition in their label?	answer the following
class. Ouestions are given	for melting to	is still present in the	·····	questions.
to be answered after the	occur	solution even though it can't be seen.		NOTE: 26 manual of table
activity.				NOTE: 36 grams of table
				salt will form a saturated
				at 25°C
Activity 1.2: Will the				at 20°C.
Solutes Dissolve?				Amount Amount Temperature
				of Salt of Water (°C)
1. Each group will be				A 20 100 25°C
provided with a set of				B 36 100 25°C
materials to test whether				
each pair of substances				1 Identify the type of
are soluble or not.				1. Identify the type of
2. Write your predictions in				situation
the data table before				A unsaturated
experimenting.				B saturated
3. Perform the experiment				C supersaturated
and record your answers				• • • • • • •
in the data table				2. From your answer, how
provided below				many grams of solute is the
				excess of a supersaturated
Materials Prediction Observation Result Will it dissolve? What does the Did it dissolve?				solution?
Yes or <u>No</u> solution like? Yes or <u>No</u>				34 grams
sugar and water				
flour and water				3. How many grams of
flour and oil salt and water				solute should be added to
				make it saturated?
				16 grams
				9

Group No. 1		
Materials		
alear plastic auna (claar		
clear plastic cups/clear		
glass, spoon, sugar, water,		
COOKING OII		
— 1		
Procedure:		
Setup 1:		
1. Put one teaspoon of		
sugar in a $\frac{1}{2}$ cup of		
water.		
2. Use the spoon to mix		
the sugar and water.		
3. Record your		
observations.		
Setup 2:		
1. Put one teaspoon of		
sugar in a $\frac{1}{2}$ cup of		
cooking oil.		
2. Use the spoon to mix		
the sugar and oil.		
4. Record your		
observations.		
Group No. 2		
Materials:		
Clear plastic cups/clear		
glass spoon flour water		
cooking oil		
Procedure:		
Setup 1:		
1. Put one teaspoon of		
flour in a ¹ / ₂ cup of		
water		
walli.		

		-
2. Use the spoon to mix		
the flour and water.		
3. Record your		
observations.		
Setup 2:		
1. Put one teaspoon of		
flour in a $\frac{1}{2}$ cup of		
cooking oil		
2 Use the spoon to mix		
the flour and cooking		
oil		
3 Record your		
observations		
observations.		
Group No. 3		
Materials.		
clear plastic cups/clear		
glass spoon salt water		
cooking oil		
Procedure		
Troccurre.		
Setup 1:		
1 Put one teaspoon of		
salt in a $\frac{1}{2}$ cup of		
water		
2 Use the spoon to mix		
the salt and water.		
3. Record your		
observations		
0000114110110.		
Setup 2:		
1. Put one teaspoon of		
salt in a ½ cup of		
cooking oil.		
- 8		

2. Use the spoon to mix		
the salt and cooking		
oil.		
3. Record your		
observations.		
Group No. 4		
Materials:		
clear plastic cups/clear		
glass, graduated cylinder or		
any measuring cup,		
rubbing alcohol, water,		
Procedure:		
Set Up 1		
1. Using the graduated		
cvlinder. measure 10		
mL of rubbing alcohol		
and 10 mL of water		
respectively		
2 Pour the two liquids		
into the plastic cup		
3 Use the spoon to mix		
the clockel with water		
A Decend your		
4. Recold your		
observations.		
Set Up 0		
1 Using the graduated		
avlinder measure 10		
mL of water and 10 mL		
inc of water and 10 mL		
OI COOKING OIL,		
respectively.		

	 Pour the two liquids into the plastic cup. Use the spoon to mix the water and cooking oil. Record your observations. 			
Deepening Understanding of the Key Idea/Stem	 After their group activity, the students will share their ideas by answering the following questions below: 1. Which of the solute-solvent combinations you observed are soluble/miscible? What made you say that the solute is soluble/miscible in the solution? Is the same with your predictions? 2. Which of the solute-solvent combinations you observed are insoluble/immiscible? What made you say that the solute is insoluble/immiscible? 2. Which of the solute-solvent combinations you observed are insoluble/immiscible? What made you say that the solute is insoluble/immiscible in the solution? Is the same with your predictions? 3. From the results of your experiment, differentiate soluble from 	 Activity 2.2.1 Identify if the following shows dissolving or melting. 1. cotton candy in the mouth 2. crushed medicine tablet in water 3. chocolate bar under the heat of the sun 4. sugar cube in coffee 5. butter on a plate 	Percent by mass can be obtained by determining the mass (g) of solute dissolved in 100 g of solution. The mass of the solution is equal to the combined mass of the solute and solvent. mass of solution = mass of solute + mass of solute + mass of solvent Sample Problem: You are preparing a solution at home containing 5 grams of salt in 100 grams of water. What is the mass percent of the solution you prepared? % by mass = [mass of solute (g)/mass of solution (g) x 100] % by mass = 5 g / (5g +100) x 100 Answer = 4.76 %	Learners form groups and analyze the scenario below. Kiida of Saturation Saturation Saturation Saturation Saturation Saturation Saturation Saturated solution is one where the maximum quantity of solution Saturated solution is one where the maximum quantity of solution Saturated solution is one where the maximum quantity of solution Saturated solution is one in which the amount of the container's bottom. Saturated solution is one in which the amount of solution Saturated solution is one in which the amount of solution, solwing for additional solute to still be dissolved. Supersaturated solutions. Saturated solution is characterized by containing an excess of solute beyoud the typical known that would normally dissolve under specific temperature and pressure conditions. Saturated solution is characterized by containing an excess of solute beyoud the typical known that would normally dissolve under specific temperature and pressure conditions.

insoluble, and miscible		solid remain on the bottom.
from immiscible.	Percent by volume refers	We have a supersaturated
	to the volume of solute (mL)	solution.
	dissolved in 100 mL of	
	solution. The volume is	If we heat the mixture to
	equal to the combined	50 °C, the remaining 9 g of
	volume of solute and	glucose will dissolve. At the
	solvent.	new temperature, the
		solubility limit in 100 mL of
	Volume of solution =	water is 244 g glucose.
	volume of solute + volume	With only 100 g of glucose
	of solvent	dissolved, the solution is
		now unsaturated.
	Sample Problem:	
	While using alcohol to	If we cool the mixture back
	disinfect your hands, you	to 25 °C, 9 g of glucose
	notice the label written as	should precipitate from the
	70% isopropyl alcohol. Your	solution.
	mother explained that 70	If also and amountails do not
	mL of alcohol is mixed with	Il glucose crystals do flot
	water to produce 100 mL of	discoluted shapes (100 s)
	solution. If you	then it can hald at 25 °C
	mix 90 mL of alcohol in	(01 g) We have a
	150 mL of solution, what is	(91 g). We have a
	the % by volume produced?	supersaturated solution.
		Activity 4.2. Identifying
	% by volume = [volume of	Types of Solution
	solute (mL) / volume of	Types of Solution
	solution (mL) x 100]	A. Classify whether the
		the solution described
	% by volume = $90 \text{ mL} / 150$	is saturated.
	mL x 100	unsaturated. or
		supersaturated.
	Answer = 45 %	••••••••••••••••••••••••••••••••••••••
		NOTE: Please refer to the
		given table below.

Activity 3.2 Practice Problem	Temperature (°C)	Solubility of Sucrose (g/100 g H ₂ O)
SOLVE THE FOLLOWING	0	179
PROBLEMS:	20	230.9
1 Your mother prepared 25	50	260.4
1. Your mother prepared 25 grams of bleaching powder and 75 mL of water. She asked you to mix the 2 materials. What is the percent by mass of the solution you prepared? Answer: % by mass = $\frac{mass of solute}{mass of solution} x 100$ = $\frac{25 grams}{100 grams} x 100$ = 25% solution 2. In your science class, your teacher demonstrates to the class how to prepare a solution containing 10 mL Hydrochloric acid and 100 mL water. What is the % by volume of the solution prepared by your teacher? Answer: % by volume of solute volume of solution x 100 100 mL	100 1. 50 grams pack were a of water at sugar disso settled at th Unsata 2. Additional sugar were same mixtur with existin sugar in the 20°C, not al crystals dis few crystals at the botto Superso 3. When 30 sugar was a of water at the sugar co dissolved, a settled at the dissolve the not dissolve	487 s of sugar in a added to 100 mI 20°C. All of the lved, and none he bottom. urated al 200 grams of added to the are in number 1 bg 50 grams e mixture and a ll of the sugar solved, and a s of sugar settled om. aturated 00 grams of added to 100 mI 20°C, some of rystals and others he bottom. To e sugar that doe e, the
$=\frac{2000}{110.0 mL} \times 100$ = 9% solution	temperatur was increas	e of the solution sed to 100°C.
	Unsatur	ated

After/Post-Lesson P	roper			
Making Generalizations and Abstractions	The students will perform the 3-2-1 feedback, students will record three things they learned in the lesson, two facts, and one question they still have. Then, they will share their thoughts with a partner	 Analyze each sentence and underline the word that best fits each statement. 1. When something (<i>melts</i> or dissolves) only one substance is involved, and heat is needed for it to occur. 2. If a substance is (soluble, <i>insoluble</i>) the solution may appear cloudy because of the undissolved particles. 3. (Solute, <i>Solvent</i>) affects solubility because it is present in a greater amount in solution. 	 Differentiate percent by mass and percent by volume. How is the understanding of the concentration of solutions beneficial to the following: a. Medicine b. Agriculture c. Food d. Energy e. Health 	Complete the statements below to express your understanding of the lesson. 1. When you go to the beach and dissolve salt in water, eventually, the water reaches a point where it cannot dissolve any more salt. This is a (saturated, unsaturated) salt solution 2. When you prepare iced tea and add sugar to it, you usually do not add as much sugar as the water can dissolve. Therefore, the sugar-water solution is (saturated, unsaturated) because more sugar could be dissolved if added. 3. Making rock candy involves creating a (saturated, supersaturated) solution of sugar and water. By heating the water and dissolving as much sugar as possible, then slowly cooling it down, more sugar is dissolved than would typically be

				possible at that
				temperature.
	The students will answer a	1. Samantha was	Choose the letter of the	Multiple Choice:
	short quiz.	experimenting in the	correct answer.	Choose the letter of the
		laboratory. She observed		best answer.
	Choose the best answer.	that when she added sugar	1. Which of the following	
		to water, it disappeared	components affects the	1. You are given a 40 mL
	1. Which of the following	completely, and the	concentration of a solution?	solution in a beaker at
	substances is insoluble in	resulting mixture looked	A. amount of solute	25°C. You added solute to
	water?	homogeneous. What	B. amount of solvent	the beaker and observed
	A. baking soda	process did Samantha	C. amount of solute and	some particles did not
	B. sand	witness?	solvent	dissolve. What solution is
	C. salt	A. melting	D. amount of time	11?
	D.sugar	B. dissolving	preparing the solution	A. saturated
	O W1 is 1. $O(41 + C(11))$ is a	C. evaporation		B. unsaturated
	2. Which of the following	D. condensation	2. What is the percent by	C. concentrated
	terms is used to describe a	0. During on orregiment	mass of a solution made up	D. supersaturated
	substance that dissolves	2. During an experiment,	of 50g sugar in 250g	0 What moved if you
		he applied heat to ap ice		2. What would you do if you wanted to lesson the
Evaluating Learning	A. Solute	aube, it changed into liquid	R. 1770 B 20%	wanted to lessen the
	C solution	water What is this process	C = 0.2%	mill was sweetened with
	D solvent	colled?	$D_{0} 0.17\%$	sugar?
	D. Solvent	A sublimation	D. 0.1770	A Add water
	3 What is the term used to	B dissolving	3 What is the percent by	B Mix the milk solution
	describe a substance that	C. meltina	volume of mint syrup in a	well
	does not dissolve in a	D. freezing	solution that contains	C. Add sugar.
	solvent?		35mL mint syrup in 200mL	D. Put it in the
	A. soluble	3. Lisa was trying to	of water?	refrigerator for an hour.
	B. insoluble	dissolve a certain powder in	A. 14.89 % as % v/v is	5
	C. solute	water, but it did not	computed as 35	3. How will you prepare an
	D. solvent	dissolve. What could be a	$mL/235 mL \times 100$	unsaturated solution of salt
		likely explanation for this?	B = 175% a % w/w is	in water?
	4. Soluble and insoluble are	A. The water was too cold.	D. 17.5 70 as 70 v/v is	A. Freeze the mixture.
	for solid solutes and liquid	B. The powder was too	computed as 55	B. Stir one teaspoon of
	solvents, while miscible and	colorful.	mL/200 mL x 100	salt crystals in 1 liter of
	immiscible are for	C. The powder is		water at room
		insoluble in water.		temperature.

		concept and can be	C. saturated
		used interchangeably.	D. unsaturated
		D. Percent by mass and	
		percent by volume are	
		only applicable to	
		gaseous solutes and	
		have no relevance in	
		liquid or solid	
		solutions.	
		5 Why is understanding	
		nercentage composition	
		important in daily life?	
		important in dany me:	
		A It halps in mostaring	
		A. It helps in mastering	
		D It as a tribates to the	
		B. It contributes to the	
		appreciation of art and	
		culture.	
		C. It is crucial for	
		making informed	
		decisions about	
		nutrition and dietary	
		choices.	
		D. It is primarily relevant	
		in advancing scientific	
		research only.	
Additional Activities			
for Application or			
Remediation (if			
applicable)			
Remarks			
Reflection			

